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A method of calculating the heat and mass transfer in a fire within a building of complex geometry is pro-
posed. The results of calculation of the three-dimensional temperature, velocity, and visible-range fields in the
gas medium of a fire simulated in the atrium, corridors, and floors of a building with the use of the mathe-
matical model developed are presented. The method proposed allowed us to reveal regularities of the heat
and mass transfer in a fire within the building considered that substantially differ from the existing views of
the dynamics of the hazardous factors of a fire in such buildings.

1. Since many countries of the world use adaptable, object-oriented, fire-protection standards, mathematical
simulation of fire is a deciding procedure in solving various problems of fire safety. The accuracy and reliability
of the method of calculating the heat and mass transfer in a fire determine the choice and placement of fire- and
explosion-alarm detectors and, therefore, the safety of people and the efficiency of fire-protection measures. How-
ever, in current Russian fire-safety standards [1], simplified methods of calculating the heat and mass transfer in a
fire are used.

The heat and mass transfer in a fire is very difficult to simulate because an actual fire within a building rep-
resents a complex thermophysical process of uncontrolled combustion leading to changes in the chemical composition
and parameters of the gas medium of the building. The turbulent, convective, and radiative heat exchange at the site
of combustion within a building and the chemical reactions occurring in the process of it, the heat exchange between
the hot gases and the fencing constructions of the building, and other processes are complicated by the heat and mass
exchange with the environment though the openings and by the work of systems of mechanical forced-exhaust venti-
lation, smoke removal, and fire suppression, with the result that very inhomogeneous temperature, velocity, and con-
centration fields of combustion products are formed in the volume of the building (nonstationary three-dimensional
problem).

A large amount of experimental and theoretical data on the regularities of heat and mass transfer in a fire
within a building with fencing constructions shaped as a parallelepiped has been accumulated to date [2–4]. However,
the influence of fencing constructions of complex geometry on the thermodynamics of the gases in a fire within them
has practically not been investigated.

2. The regularities of the heat and mass transfer in a fire within a building of complex geometry were inves-
tigated using a three-dimensional, mathematical field model described in detail in [4, 5] with the following simplifica-
tions of the actual thermodynamics of the gases in a fire:

(a) the gas medium of the building is in local thermodynamic and chemical equilibrium;
(b) the gas medium is a mixture of ideal gases and smoke (solid particles);
(c) the velocities and temperatures of the gas-mixture components remain unchanged at each point of the

space;
(d) the chemical reaction of combustion is one-stage and irreversible;
(e) the dissociation and ionization of the medium as well as the thermodiffusion and pressure diffusion of the

gases are negligibly small;
(f) the turbulent pulsations do not influence the thermophysical properties of the medium;
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(g) the mutual influence of the turbulence and radiation is small.
The nonstationary, three-dimensional, differential equations of mass, momentum, and energy conservation were

solved for the gas medium of a building (Navier–Stokes equations in the Reynolds form), the gas-medium components,
and the optical density of the smoke. These equations were brought into the "standard" form [6] suitable for numerical
solution:

∂
∂τ

 (ρΦ) + div (ρwΦ) = div (Γ grad Φ) + S , (1)

where Φ is a dependent variable (the enthalpy of the gas mixture and the material of the wall and the floor (ceiling),
the projection of the velocity on the coordinate axes, the concentration of the gas-mixture components, the optical den-
sity of smoke, the kinetic energy of the turbulence and the rate of its dissipation), Γ is the diffusion coefficient for
Φ, and S is the source term. Hereinafter, time-averaged quantities will be used. The parameters and coefficients of Eq.
(1) are presented in [5].

We used the k–ε model of turbulence with the following set of empirical constants [7]: C1 = 1.44, C2 = 1.92,
σk = 1.0, σε = 1.3, and Cµ = 0.09. In Eq. (1), the effective gas viscosity µef = µ + µt, the effective heat conduction
λef = λ + λt + λr, and the effective diffusion Def = D + Dt.

The dynamic gas viscosity was determined by the Sutherland formula [7] and the turbulent viscosity was de-
termined by the Kolmogorov formula [7]. The turbulent heat conduction was determined from the relation λt = cpλt/Prt
and the turbulent diffusion was calculated as Dt = µt/(ρPrd). We assumed that Prt = Prd = 1 [7].

The radiative heat transfer was calculated by the diffusion method (moments method) [8]. In this case, λr =
0 and the source term in the energy equation is equal to

Qr = − 
4π
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where I is the radiation intensity determined from the equation
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here, Ib = σT4 is the blackbody-radiation intensity.
It is assumed that the local radiation-attenuation coefficient is equal to the local emissivity of the emitting and

absorbing medium and is determined as

β = λ∗
W , (4)

where W is the local density of smoke, determined from Eq. (1), and λ∗  is the coefficient of recalculating the radiation
from the optical to the infrared range [4].

The rate of gas supply to a solid combustible is equal to [2]

ψ = ψspFc.m , (5)

where Fc.m = πr2, r = wflτ is the combustion radius, and wfl is the linear velocity of flame propagation over the com-
bustible-material surface.

The rate of change in the optical density of smoke on the combustible-material surface is determined by the
formula [5]

W = Wspψ . (6)
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A combustion region is determined by the volume mass and heat sources distributed uniformly in the volume
of a parallelepiped of height h = 2ac.m, the area of whose base is equal to the area of the open surface of the com-
bustible material. It is assumed that the time of complete combustion is equal to the time of complete combustion in
the open air [2] and that the after-combustion of the gasified combustible material is absent outside the indicated re-
gion. The latter assumption is true at the initial stage of a fire where an oxidizer is present in excess (a fire controlled
by a load [2]).

In the computational region parts occupied by the fencing constructions, the effective coefficient of heat con-
duction is assumed to be equal to the heat-conduction coefficient of the material of these constructions and the effec-
tive viscosity is taken to be equal to µef = 1010 kg/(m⋅sec). In this case, wx = wy = wx = 0 inside the solid material,
which makes it possible to solve Eq. (1) throughout the computational region without separating the inner solid
boundaries.

The following boundary conditions were set for Eq. (1):
(a) the projections of the velocities on the inner surfaces of the fencing constructions are equal to zero; the

boundary conditions for the energy equation are determined using the "near-wall" functions [7], and ∂Φ ⁄ ∂n = 0 for
the other parameters;

(b) ∂Φ ⁄ ∂n = 0 in the cross-sectional plane of an open opening or in the region of gas outflow outward
through the conditional boundaries of the adjoint outer-air region; the pressure, temperature, and concentrations of the
gas components in the region of outer-air inflow correspond to the atmospheric-air parameters.

The initial conditions (at τ = 0 sec) are as follows: T = T0, p = p0, wx = wy = wz = 0, Gg.out = Ga.in = 0,
XO2

 = 0.23, XN2
 = 0.77, XCO = XCO2

 = 0, and W = 0.
Equation (1) was solved using the control-volume method [6] by the explicit finite-difference scheme on a

uniform staggered grid with the use of an equation for pressure correction in the "compressible" form. It was assumed
that the gas-medium parameters are distributed inside each control volume in accordance with an upwind difference
scheme. The time step was determined from the Courant condition [6].

The data of calculations performed using the model proposed on finite-difference 11 × 11 × 11 and 21 × 21
× 21 grids with time steps of 5⋅10−4 and 10−5 at various Courant numbers [6] differ by no more than 5%. Moreover,
the accuracy of the calculations was controlled by fulfillment of the local and integral laws of mass and energy con-
servation in the computational region.

Using the mathematical model developed, we investigated the influence of fencing constructions of complex
geometry on the parameters of heat and mass transfer with the example of fires simulated in public buildings. It was
assumed that systems of fire suppression, mechanical ventilation, and smoke removal are absent.

The properties of the model fire load were determined by the standard fire load for industrial products [3]: the
lowest working combustion heat Qlow

w  = 16.7 MJ/kg, the specific rate of combustion ψsp = 0.0244 kg/(m2⋅sec), the
consumption of oxygen in the process of combustion LO2

 = 2.56, the release of carbon monoxide LCO = 0.0626, the
release of carbon dioxide LCO2

 = 0.879, the specific release of smoke Wsp = 60.6 Np⋅m2/kg, and the rate of flame
propagation wfl = 0.0071 m/sec.

3. We will consider a model fire in an atrium at the center of a three-story commercial and cultural-entertain-
ment center. It is assumed that combustion arises in a commercial room on the first floor that is adjacent to the en-
trance to the atrium. Let us consider the case where there is only an inflow of combustion products to the atrium,
which is most dangerous for the people found on stairways between the floors of the atrium.

The atrium is of the following size: height, 25 m; height of the cylindrical part, 15 m; diameter of the cylin-
drical part, 15 m. The conic, near-dome part of the atrium is connected to an extension shaped as a parallelepiped of
width 10 m and length 40 m.

A nonuniform finite-difference grid of size 31 × 31 × 29 was used.
The results of calculation of the thermodynamics of the gases in the atrium with the use of a field model are

presented in Figs. 1–4. These figures show the diagrams of the flow and the velocity, temperature, and visible-range
fields in the longitudinal, vertical cross section of the atrium, passing through its symmetry axis, determined for dif-
ferent instants of time.

The door separating the commercial room subjected to fire, through which the combustion products enter the
atrium, is located at the lower right corner and the extension of the near-dome part of the atrium is located at the
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upper right corner (see Figs. 1–4). The coordinate axes x and z are directed along the length and height of the com-
mercial center, respectively. The values of the temperature, visible range, and velocity are given, respectively, in K, m,
and m/sec.

It is seen from Figs. 1–4 that the mixture of combustion products and air entering the atrium through the door
of the commercial room subjected to fire propagates along the ceiling of the second floor toward the center of the
atrium and moves up in the form of a convective column. In the atrium there arise large-scale vortex flows that gradu-
ally occupy the whole volume of the atrium. Due to the features of the thermodynamics of the gases in these flows,
the third floor is blocked earlier than the fourth floor by the dangerous flame factors (poor visibility and high tempera-
ture). A part of the combustion products enter the atrium extension, whose open opening works in a "combined" re-
gime of gas exchange [3].

This three-dimensional and very nonstationary thermodynamics of the gases in a fire within the atrium cannot
be simulated with the use of integral or zonal models of fire [2].

4. We now consider the features of the fire developed in the corridors of a commercial and entertainment cen-
ter of height 7 m (analytical formulas and integral models [2] can be used in fire-safety standards [1] for calculating

Fig. 1. Diagrams of the flows after 120 (a), 240 (b), 300 (c), 330 (d), 510 (e),
and 660 sec (f) from the onset of combustion. x, z, m.
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Fig. 2. Velocity fields after 240 (a) and 300 sec (b) from the onset of combus-
tion. x, z, m.

Fig. 3. Temperature fields after 240 (a), 330 (b), 450 (c), 510 (d), 690 (e), and
720 sec (f) from the onset of combustion. x, z, m.
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Fig. 4. Visibility-range fields after 450 (a) and 510 sec (b) from the onset of
combustion. x, z, m.

Fig. 5. Diagrams of the flow (a, c, e) and temperature fields (b, d, f) in the
corridor of a building, namely, in the plane parallel to the floor and offset by
0.1 m from it after 60 (a, b), 180 (c, d), and 240 sec (e, f). x, y, m.
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the parameters of the fire within a building if the height of this building is smaller than 6 m because only in this case
do the distributions of the flame parameters over the height used in these methods have a physical meaning [2]). The
dimensions of the commercial and entertainment center are 94 × 68 m.

Let us consider the most dangerous case of fire where combustion begins in the commercial room near one
of the evacuation exits (Fig. 5). It is assumed that the door between the commercial room and the corridor is opened
and the evacuation exits are closed, i.e., practically all smoke is contained in the corridor volume.

A nonuniform finite-difference grid of size 35 × 35 × 21 was used.
Figure 5 presents the temperature fields and the diagrams of the gas-mixture flows in the corridor of the

building considered, namely, in the plane parallel to the floor and offset 0.1 m from it. The temperature fields in the
longitudinal cross section of the corridor (x = 5 m) are presented in Fig. 6.

The coordinate axes x, y, and z are directed along the length, width, and height of the building, respectively.
The temperature values are given in Kelvins.

Analysis of the calculation data shows that the times τbl from the beginning of combustion to the blocking of
the evacuation exits located in the cross sections y = 0 m (x = 5 m) and y = 94 m (x = 5 and 52 m) of the corridor
considered are close in the dangerous fire factors with an accuracy of up to 5%:

(a) the visibility is lost for τbl = 360 sec; for this time, the lower edge of the smoke layer reaches the middle
level (offset by 1.7 m from the floor) of the respiratory organs of people (Fig. 6c);

(b) the temperature increases to a limiting value for τbl = 540 sec; for this time, the temperature at the middle
level of the respiratory organs of people reaches 343 K [3] (Fig. 6d).

The other dangerous fire factors, such as a decrease in the oxygen concentration and an increase in the con-
centration of toxic components (carbon monoxide and carbon dioxide), do not reach critical values for the time of the
fire considered [3].

The data obtained have shown that the distance from the site of combustion to the evacuation exit does not
substantially influence the time of safe evacuation of people through this exit, while in a building with fencing con-
structions in the form of a parallelepiped, this time depends on the indicated distance [5].

Fig. 6. Temperature fields in the longitudinal cross section of the corridor of a
building after 120 (a), 240 (b), 360 (c), and 540 sec (d). x, z, m.
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5. We now consider the features of a fire in a three-story commercial complex in which the free volumes of
all floors are connected by vertical openings (escalators) with a small open area (the ratio between the opening area
and the floor area is equal to 0.05). We used geometric dimensions given in design plans and specifications: first and
second floors: length 41.2 m, width 33 m, height 3.6 m, free volume of each room 4895 m3; third floor: length 45
m, width 33 m, height 3.6 m, volume 5346 m3.

Combustion begins on the first floor in the immediate vicinity of the escalator opening leading to the second
floor (Fig. 7).

The floors of the building considered comprise a unit volume (due to the escalator openings) of height 10.8
m, which exceeds the maximum height, equal to 6 m, at which an integral model can be used [1]. Therefore, the in-
tegral method [2] can be used in the case considered only for calculating the dynamics of the dangerous factors of the
fire within the space of an individual floor.

A nonuniform finite-difference grid of size 35 × 35 × 21 was used. The coordinate axes x and y are directed
along the length and height of the building, respectively.

Fig. 7. Diagrams of the flow (a, c, e) and temperature fields (b, d, f) in the
longitudinal cross section of a commercial building after 60 (a, b), 180 (c, d),
and 360 sec (e, f). x, z, m.
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Figure 7 shows the diagrams of the flows and the temperature fields in the gas mixture in the longitudinal
cross section of the commercial complex, passing through the site of combustion at different instants of times from the
onset of combustion. The temperature values are given in Kelvins.

The results of the calculation have shown that the first floor is blocked first by the dangerous fire factors; for
it, the critical time of fire, for which the visibility is lost, is τbl = 350 sec. At the second and third floors of the build-
ing, the situation is more favorable in the dangerous factors, despite the existence of openings (escalators) in them.
This is explained by the fact that the hot combustion products containing smoke propagate along the first and second
floors and practically do not enter the third floor because of the small areas of the escalator openings.

The data obtained do not agree qualitatively with the main statements of the zonal models, in accordance with
which the hot combustion products containing smoke should move up to the ceiling of the third floor and then they
should move down. In this case, the second floor is blocked first by the dangerous fire factors.

Analysis of Fig. 7 shows that the main assumptions on the thermodynamics of the gas in separate zones of
the fire within a building shaped as a parallelepiped, used in zonal models of heat and mass transfer, such as a uni-
formly heated near-ceiling layer, a symmetric convective column, and others, do not correspond to the complex ther-
modynamics of the gases in the fire considered. Moreover, the integral and zonal models cannot predict the fact that
the first and second floors are blocked first by the dangerous fire factors and the third floor is practically safe for peo-
ple within the time of the fire considered.

Thus, integral or zonal models of fire cannot be used for simulation of the very nonstationary three-dimen-
sional thermodynamics of the gases in a fire within a three-story commercial building.

CONCLUSIONS

1. The thermodynamics of the gases in a fire within a building of complex geometry differs substantially in
its qualitative parameters from that of a fire within a building with fencing constructions shaped as a parallelepiped.
The influence of the complexity of the geometry of fencing constructions on the dynamics of the dangerous fire fac-
tors invites further investigations.

2. The most promising direction of mathematical simulation of the heat and mass transfer in a fire within a
building of complex geometry is further development of the field (differential) method. Integral and zonal models of
the thermodynamics of the gases in a fire can be used for estimation calculations or for determining the parameters of
fires occurring under experimentally investigated conditions.

3. In the case of a fire within a building of complex geometry, the field method allows one to determine the
time necessary for evacuation of people, the response time of fire-alarm detectors and sprinkler setups, and the actual
fire-resistance limit of the building construction as well as solve a number of other problems of fire safety.

4. The development of mathematical models of heat and mass transfer in a fire within a building of complex
geometry is directly dependent on the progress made in the physical (experimental) simulation of fire. The reliability
of methods used for calculating the heat and mass exchange in a fire is mainly determined by the amount and quality
of available experimental data on its characteristics.

NOTATION

ac.m, length of the fire load, C1, C2, Cµ, constants; cp, specific heat at constant pressure; D, diffusion coeffi-
cient; Fc.m, area of the open surface of the combustible material; G, mass flow rate of the gases; h, height of the fire
load; I and Ib, intensity of radiation from the medium inside a building and a black body; k, kinetic energy of turbu-
lence; LCO and LCO2

, specific yields of carbon monoxide and carbon dioxide; LO2
, specific consumption of oxygen; n,

normal to the surface; p, pressure; Pr and Prd, Prandtl number and diffusion Prandtl number; T, temperature; Qlow
w ,

lowest working heat of combustion; Qr, heat transferred by radiation; W, optical density of smoke; w, velocity; X, con-
centration; x, y, and z, coordinates along the length, width, and height of the building, respectively; β and χ, integral
attenuation coefficient and emissivity of the medium; λ and µ, heat-conduction coefficient and coefficient of kinematic
viscosity; λ∗ , coefficient for recalculating the radiation from the optical to the infrared range; ε, rate of dissipation of
the kinetic turbulence energy; ρ, density; σ, Stefan–Boltzmann constant; σk, σε, constants; τ, time; τbl, time from the
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onset of combustion to the blocking of the evacuation exit; ψ, rate of gasification of the combustible material. Sub-
scripts: sp, specific; a.in, air inflow; g.out, gas outflow; 0, parameters at the initial instant of time; ef, effective; x, y,
z, projections on the coordinate axes; t, turbulence; r, radiative heat exchange; b, blackbody; d, diffusion; c.m, com-
bustible material; fl, flame; bl, blocking of evacuation exits by the dangerous factors; w, working; low, lowest.

REFERENCES

1. Fire Safety. General Requirements, GOST 12.1.004-91 SSBT (State Standard) [in Russian], Gosstandart Rossii,
Moscow (1992).

2. V. M. Astapenko, Yu. A. Koshmarov, I. S. Molchadskii, and A. N. Shevlyakov, Thermogasdynamics of Fires
in Buildings [in Russian], Stroiizdat, Moscow (1986).

3. Yu. A. Koshmarov, Prediction of Hazardous Fire Factors in Buildings [in Russian], Akademiya GPS MChS
Rossii, Moscow (2000).

4. S. V. Puzach, Mathematical Simulation of Heat and Mass Transfer in Solving Problems of Fire and Explosion
Safety [in Russian], Akademiya GPS MChS Rossii, Moscow (2003).

5. S. V. Puzach and V. G. Puzach, Some three-dimensional effects of heat and mass transfer in a fire within a
building, Inzh.-Fiz. Zh., 74, No. 1, 35–40 (2001).

6. S. Patankar, Numerical Methods for Solving Problems of Heat Transfer and Fluid Dynamics [Russian transla-
tion], E′nergoatomizdat, Moscow (1984).

7. L. G. Loitsyanskii, Mechanics of Liquids and Gases [in Russian], Nauka, Moscow (1990).
8. M. N. Ozisik, Complex Heat Transfer [Russian translation], Mir, Moscow (1976).

439


